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a b s t r a c t

The C1–C13 fragment of bistramide A was prepared from 5-hexenoic acid in 15 linear steps and in 16%
overall yield. The core 2,6-trans-tetrahydropyran ring was obtained via a kinetically controlled oxa-
Michael cyclization from the corresponding chiral a,b-unsaturated hydroxyester. This precursor was pre-
pared by using a diastereoselective alkylation reaction using Davies Superquat auxiliary and a diastereo-
selective Roush’s allylboration as key steps.

� 2010 Elsevier Ltd. All rights reserved.
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bistramide A
Bistramide A is a member of a family of bioactive cyclic polye-
thers isolated from the marine ascidian Lissoclinum bistratum near
New Caledonia.1,2 This macrolide induces sodium channel inhibi-
tion3 and has immunomodulating properties.4 In addition, bistra-
mide A exhibits high cytotoxicity and has significant effects on
cell cycle regulation,2,5 in particular a potent antiproliferative pro-
file.6 The mode of action of bistramide A to explain this antiprolif-
erative activity was initially attributed to a highly selective
activation of protein kinase C isotope d.7 More recent studies have
identified actin as the primary cellular receptor of bistramide A
establishing this marine metabolite as a potential lead for a new
class of anticancer agents.8–10

The disconnection of bistramide A amide linkages leads to three
fragments: a central c-aminoacid residue connected to a tetrahy-
dropyran subunit (C1–C13 fragment Fig. 1) and a spiroketal sub-
unit. All syntheses of this target macrolide reported so far have
been designed on this convergent approach.11–14 In the first total
synthesis of bistramide A by Kozmin et al. providing the full struc-
tural and stereochemical assignment of this complex molecule, the
construction of the C1–C13 fragment was based on a ring-closing
metathesis reaction to form an intermediate unsaturated d-lac-
tone. After hydrogenation, this compound was then transformed
into the tetrahydropyran ring via a key C-glycosidation to intro-
duce the C1–C4 enone fragment.11 The same strategy to access
the tetrahydropyran subunit from the saturated d-lactone was ap-
plied in two other syntheses.12,14 The intermediate d-lactone was
ll rights reserved.
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in these cases obtained by lactonization of an appropriate hydroxy-
ester precursor. Panek and co-workers have described the synthe-
sis of the C1–C13 fragment through a [4 + 2]-annulation utilizing a
chiral syn-(Z)-crotylsilane reagent.13,15 Depending on the crotylsi-
lane stereochemistry, this methodology enabled the access to all
eight possible stereoisomers of the tetrahydropyran subunit, which
allowed the recently published synthesis and screening of a 35-
member analog library of bistramide A.16 As a part of a program
devoted to the discovery of new modulators of protein kinases,
we were interested in the total synthesis of bistramide A and ana-
logs. In parallel to our work on the formation of tetrahydropyran
analogs of the C1–C13 subunit,17,18 our objective was to design a
novel diastereoselective synthesis of this fragment, which we dis-
close herein.
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Figure 1. Fragment C1–C13 of bistramide A.
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The retrosynthetic analysis is shown in Scheme 1. The enone
moiety is accessible in a straightforward manner from allyl-substi-
tuted tetrahydropyran 2. This substrate may be constructed
through a Wittig reaction and a diastereoselective allylation reac-
tion on aldehyde 4, which can be derived from 5-hexenoic acid.

The synthesis of aldehyde 4 depicted in Scheme 2 was achieved
from 5-hexenoic acid, which is commercially available but can also
be prepared on a large scale in one step from inexpensive cyclo-
hexanone.19 This acid was converted into chiral N-acyl compound
5 with Davies’ 4-isopropyl-5,5-dimethyl Superquat auxiliary.20 The
asymmetric alkylation of N-acyl enolate derived from 5 with
methyl iodide furnished methylated product 6 which could be iso-
lated as a single diastereoisomer in 86% yield after recrystalliza-
tion. Rapid treatment of 6 with LiAlH4 yielded alcohol 7 and the
recovery of the chiral auxiliary. A PMB protection of 7 followed
by an oxidative cleavage of olefin 8 delivered aldehyde 4 in high
yield.

Aldehyde 4 was next subjected to a diastereoselective allylation
reaction with chiral diisopropyl tartrate allylboronate according to
Roush’s methodology (Scheme 3).21 The corresponding homoallylic
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alcohol was thus obtained in high yield as a 4:1 mixture of diaste-
reoisomers, from which the desired isomer 9 could be isolated in
73% yield. A TBS protection of the resulting secondary alcohol, fol-
lowed by PMB deprotection of 10, afforded primary alcohol 11,
which was oxidized in the presence of Dess–Martin periodinane.22

A Wittig reaction between aldehyde 12 and commercially available
(carbethoxymethylene) triphenylphosphorane provided the geo-
metric (E)-isomer 13 in 94% yield. Removal of the TBS-protecting
group under acidic conditions23 provided the target Michael accep-
tor 3 in quantitative yield.

The key transformation of this synthesis was the intramolecular
oxa-Michael cyclization and its stereochemical outcome from
functionalized Michael acceptor 3. Previous studies on nor-methyl
derivatives have shown that NaH-promoted conjugate addition
(�78 �C to rt) could afford 2,6-trans disubstituted tetrahydropy-
rans as the major stereoisomer.18,24,25 Preliminary attempts26 in
the presence of NaH or t-BuOK indicated that cyclization occurred
very rapidly at �78 �C while t-BuOK gave a higher ratio in favor of
the desired isomer than NaH. Therefore less basic t-BuOK was used
instead of NaH. Treatment of 3 for 25 min at �78 �C in the presence
of 1.1 equiv of t-BuOK provided a 3:1 mixture of cyclization prod-
ucts in favor of the 2,6-trans isomer in 96% yield (Scheme 4).27 The
reaction had to be carried out under kinetic conditions (low tem-
perature, short reaction time) in order to avoid the formation of
the thermodynamic cycloadduct epi-2. Indeed, when the reaction
was allowed to warm up to rt or when cycloadduct epi-2 was
resubmitted under the reaction conditions, this starting material
was recovered unchanged in both cases. The diastereomers were
separable by column chromatography and tetrahydropyran 2 could
be isolated in 72% yield. The relative 2,6-trans relationship of the
protons adjacent to the oxygen in THP 2 was attributed on the ba-
sis of the values of the chemical shifts of these protons (4.30 and
3.64 ppm) which are higher for the trans-isomer than for the cis-
isomer epi-2 (3.42 and 3.32 ppm).

The completion of the C1–C13 fragment was achieved in three
steps from 2 according to a sequence previously reported by Kit-
ching and co-workers (Scheme 5).28 Oxidative cleavage of the ter-
minal olefin afforded the corresponding intermediate aldehyde,
which was directly subjected to an allylation reaction with zinc
powder and allyl bromide under biphasic conditions.29 Homoal-
lylic alcohol 14 was thus obtained in 92% yield over two steps
and subjected to oxidation under Swern conditions.30 Use of excess
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triethylamine in this last step enabled the in situ isomerization of
the resulting a,b-unsaturated ketone into conjugation to provide
target enone 1 in 77% yield.31

In conclusion, a diastereoselective synthesis of the C1–C13 frag-
ment of bistramide A has been achieved in 15 steps with a 16%
overall yield. The core-trisubstituted tetrahydropyran was ac-
cessed through a key oxa-Michael cyclization under kinetic condi-
tions to control its 2,6-trans relative stereochemistry.
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